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When a fluid flows around a plated elastic body an interesting flow regime occurs when 
undamped oscillations are excited and (or) maintained in the material making up the plating 
due to the energy of the flow field. The study of hydroelastic oscillations of this kind is 
important in the computation of the strength of materials and also in the problem of redu- 
cing the resistance of the body to the flow. The latter problem has been studied extensively, 
mainly experimentally. In a series of theoretical papers (see [i, 2], for example) the 
direction of study taking into account the interaction of the vortex structures of the flow 
with the surface waves of the streamlined elastic body appears to be the most promising. 

Modern computational methods and techniques allow one to solve, in principle, the prob- 
lem of hydroelastic oscillations in the complete (nonlinear) formulation. However this for- 
mulation leads to complicated and expensive numerical calculations of the amplitude and energy 
parameters. The linear formulation of the problem can be treated analytically up to obtain- 
ing of the so-called "critical parameters" of the problem. For example, the critical veloc- 
ity of an incompressible fluid flowing around an elastic half-space was considered in [3]. 

In the present paper weanalyze, in the linear formulation, the behavior of the critical 
parameters of the flow, taking into account the finite thickness of the elastic layer, the 
compressibility of the fluid, its density and other parameters, such as internal damping 
(friction) of the layer. 

i. We consider a viscoelastic layer of thickness h in the xz plane (--h~z~O, -~ < 
x < ~). The surface layer z = 0 interacts with a two-dimensional potential flow of an ideal 
compressible fluid. 

The stresses and displacements in the viscoelastic body are related by the equations [4] 

[au x a%~ a [au= au,~ 

( )au x ( 2 )a%+ a._a_[( 4 ,au# / 2 ,0%; ( 1 . 1 )  

where K is the compressibility; ~ is the shear modulus; ~, q are the viscosities of the mate- 
rial (small quantities); u x, u z are the displacements along the x and z axes; t is the time. 

On the upper boundary of the layer we have 

Oxz = O, azz = - - P o  ( 1 . 2 )  

(P0 is the pressure of the flow field). On the rigidly fixed bottom of the layer we have 

u ~  = O, u z = O. (1.3) 

Introducing the friction coefficients 

e, = Y(~  -F- 4n/3)Ip, at = ]/'~-'~, (1.4) 

which have the same forms as the well-known expressions for the velocities of compressional 
and shear waves [4] 

cz = V ( K  + 4~/3)/p. c t = g-~7-p (1.5)  
(p is the density of the material), we can obtain equations for the displacement vectors cor- 
responding to compressional and shear deformations: 
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~ c~hv + l-~av, - - =  E2 0 . 
Ot 2 

div u = O, 

The components vz, v2, ul, u~ of these vectors 
by the relations u x = u~ + v~, u z = u= + v=. 

We have the following well-known equation 
an ideal compressible fluid 

02~ + O~ I ( 0 ~  

where c o is the speed of sound in the fluid; U 
finitely far from the elastic layer). 

--O~u = c~Au + e 2t -~a hu;  ( i .  6 ) 
Ot z 

rot  u = O. ( 1 . 7 )  

a r e  r e l a t e d  t o  t h e  " p h y s i c a l "  d i s p l a c e m e n t s  

for the velocity potential �9 of plane flow of 

0% o~) + 2U~f + U 2 :~ (1.8) 

is the velocity of the unperturbed flow (in- 

The damped condition of the velocity perturbation (at z = ~) will be 

o~/ax  = U, ( 1 . 9 )  

and the condition that the fluid cannot pass through the oscillating boundary z = w(x, t) is 

(1 .10 )  Ou/Ot + UOuffax = o~/oz, 

which can be applied on the boundary z = 0, in view of the smallness of w. 

The pressure in the fluid is found from the Cauchy-Lagrange integral 

Po Oq) t 
p-~ + ~ f  + =i (V~)2 = const ( 1 .1  1 ) 

(Oo is the density of the fluid). 

2. We limit ourselves to solutions periodic in x. Let % be the wavelength, where % = 
2~/k, k is the wave number and w is the frequency. The potential �9 can be represented in 
the form 

q)(x, z, t) = U z  @ C e x p ( - -  i0 - -  K lz  ) ( 2 . 1 )  

(C i s  an  u n d e t e r m i n e d  c o n s t a n t ,  0 = kx  - m t ) .  W i t h  K 1 = k J l  - M1, M 1 = iUph - U I / c  o, Uph = 
u/k, (2.1) satisfies (1.8). The condition (l.10)can be satisfied by proper choice of the un- 
determined constant. 

The displacement in the elastic layer is written as a wave of the same form 

u] = Uj(z)e -m,  vj = V~(z)e -i0 (] = 1, 2). ( 2 . 2 )  

E q u a t i o n s  ( 1 . 6 )  and  ( 1 . 7 )  t h e n  f o r m  a s y s t e m  o f  h o m o g e n e o u s  l i n e a r  o r d i n a r y  d i f f e r e n t i a l  
e q u a t i o n s  f o r  Uj and  V j .  

The pressure in the fluid [after linearization of (i.ii) and proper choice of the con- 
stant on the right-hand side] is P0 = -ip0~C(Uph - U)exp (-i• Then the boundary conditions 
(1.2) and (1.3) also transform into linear homogeneous relations. 

We therefore obtain the following closed homogeneous system 

U;:=x~U~ ,  V ~ = • 1 6 2  ( / = 1 , 2 ) ;  ( 2 . 3 )  

U'2 = ikU~, V'I = - -  ikV2; ( 2 . 4 )  

u~ (o) + v ;  (o) - ik (U~ (0) + V~ (0)) = 0; (2 .  S) 

(c~ + e~) (U~ (0) + V'2 (0)) - -  ik (c~ - -  2c~ + i~ (e~ - -  2e~)) (U~ (0) + 

+ v~  (o)) = ~Ck ~_o (Vph-- U), ~C = Vph-- V 
P V ~  - - 2 - ~  (u~(o)  + v~(o));  ( 2 . 6 )  

U j ( = - h )  + V j ( - - h )  = 0 (] = t ,  2). ( 2 . 7 )  

R e r e  x? = k~ (1 - -  pD,) ;  • = k~ (t - -  6 ~ D z ) ;  ~ = 4 / c , ;  ~ = ~ /cz ;  D,  = 1/(1 + ~k~8~); D~ = 1/(t + i k ~ , ) ;  g = 
m / ( k c  t )  i s  t h e  d i m e n s i o n l e s s  f r e q u e n c y .  

The condition that there exist a nontrivial solution of the system (2.3) through (2.7) 
gives, after several reductions, 
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F(~) ~-  uDt  (~ - -  7) ~- - - V I  - -  B"(~ - -  7)'~A = 0, ( 2 . 8 )  

whose  s o l u t i o n  g i v e s  t h e  f r e q u e n c y  ~ and  t h e r e f o r e  a l s o  ~ o f  t h e  R a y l e i g h  waves  a s  a f u n c -  
t i o n  of the various parameters of the problem. In (2.8) r = P0/P is the dimensionless den- 
sity of the fluid; y = U/c t is the dimensionless velocity of the flow; 6 = ct/c~; ~ = ct/c 0 
is the compressibility index of the fluid; o = kh/2~ = h/X is the reduced (to the wavelength) 
thickness of the elastic layer; A = (RIS I - R~S~)/(RIS ~ - R~S~), where R I = BI(Q + Q~) - 

B2Qx~; R~ = B1Q22 + B~(Q - Q I ~ ) ;  

S~ = - -A~Q,~ -4- A~(Q + Q~); S~ = A~(Q - -  Q~,) + A,Q~x; 

Bx = t -}- x~; B~ = 2xt; A t = 2xt;  A~ = Bx; 

q~x = - - 2 x t E t E t ;  Q~ = - - ( t  + xtxt)E~; ( 2 . 9 )  

Qzl = - ( t  + xtxt)E~; Qzz = - -  2x tEtEt ;  

Q = | - x tx , ;  E t ---- exp( - -  2~(rxt); E t -= exp( - -  2a(rxt); 

z~ = 1 / 1 -  ~D~ ,  z~ = V"t - ~ D , .  

The general solution of (2.8) is a complicated quantity of the form ~(X, ~, 5, U, a, 
ev) = X + iY. The parameters in this expression determine the stable region (Y~0) and E u ) 

the unstable region (Y < 0) of the oscillations of the surface of the elastic layer. The 
parameters defining the boundary between these two regions are called the critical parameters. 
We will mainly study the dependence of the critical velocity ~, on the other parameters. 

3. We consider an elastic half-space without viscosity and with the condition c~ ~ c t- 

Then ~u = ~v = 0, o = ~, 6 = 0. Equation (2.8) simplifies to 

~ 2  (~ _ ~)2 = O. ( 3 . 1  ) (2  - - 4 V l - + V - - 

In the absence of the flow, i.e., when ~ = 0, (3.1) has the known [4] roots 51,2 = 0.955..., 
which are the dimensionless natural frequencies of oscillation of the half-space (Rayleigh 
surface waves). If ~ ~ 0 but U = 0 (an incompressible fluid) (3.1) reduces to an algebraic 
equation of the sixth degree. Varying ~ continuously in the interval 0~y~y., one can fol- 
low the "trajectories" of the roots ~1,2 to the point where they join at ~ = X,. 

Detailed calculations and analysis of this kind have been given in [3]. However, this 
type of calculation becomes practically impossible for finite values of o and also for U ~ 0, 
6 ~ 0 because the form of equation (2.8) becomes very complicated. Therefore in the present 
paper we consider first the quantity X(~) rather than ~(~). It follows from (2.8) that for 

real ~ in the interval -1 5 ~ 5 1 

From this general solution we have two interesting special cases: 

i) rarefied compressible flow (air) around a layer of elastic plate, when = ~ 0.001, 
~ 0.i, A ~ I00, and therefore (UA/e) 2 ~ A/a: 

7 = ~ • t /~;  ( 3 . 3 )  

2) flow of an incompressible fluid (water) around a thick rubber layer, when ~ ~ i, U ~ 

0, A = i-I0: 

= • ( 3 . 4 )  

The function ~(~) for ]~1<1 is illustrated in Fig. i, where e = i, U = 0, 6 = 0, o = I0. 
The curve has the form of an inclined ellipse tangent to the two vertical lines ~ = ~1,2 at 
the points where they intersect the line y = ~. When o = ~ the calculation gives ~1,2 = 
0.955..., but when o is small and finite (this quantity depends on the other parameters) ~1,2 
lie outside of the interval I~[~I. The upper extremum point in Fig. i corresponds to ~. 
The function X(~) is shown in Fig. 2 for e = 0.001, o = ~ and U = 0, 0.01, 0.05, 0.I0 (curves 
1-5, respectively). 

Analysis of (3.2)-(3.4), Fig. 2, and Table i (the dependence of X, on the thickness 
of the layer and the density of the fluid for ~ = 0, 6 = 0) shows that the critical 
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TABLE 1 

O,OOi 0,005 0,0t0 l,O00 

10,0 
t,0 
0,5 
0,1 
0,05 

44,736 
44,75t 
46,993 

t43,62 
337,54 

20,033 
20,040 
21,047 
64,29 

15i,03 

14,i89 
t4,i94 
i4,9it 
45,52 

i06,86 

1,793 
1,795 
t,940 

velocity increases with decreasing o and ~ and decreases with increasing ~, which is in com- 
plete correspondence with the physical interpretation of the phenomenon. 

4. When internal friction is taken into account (i.e., eu ~ 0, e v z 0) the function 
F(~, 7) from (2.8) will be complex. The solution of this equation must be found by iteration 
(here the method of sections is applied) in the complex plane g(7) = X + iY. An initial guess 
is chosen near the critical values of 6, 7 calculated without taking friction into account, 
and calculations were performed in the subcritical and supercritical regions. 

Table 2 presents the dependence of X and Y on 7 for different eu, e v = ~u (~ = i, ~ = 0, 
5 = 0, o = 5, k = ~). For these values of the parameters the value of 7* calculated without 
taking into account friction is 7, = 1.79. 

We observe the following paradox: there exists a zone (for 7 < 2) where the instability of 
of the elastic layer in the flow increases when the friction ks u increases. Calculations 
for other values of the parameters (~ = 0.001, ~ = 0.i, 5 = 0, o = 0.5, e u = 0.05, ~v = eu) 
presented in Table 3 show that this is not an accidental occurrence, but a manifestation of 
Siegler's paradox, which is an old, but little-known, oaradox, and is described in [5, 6], 
for example. As shown in [5], in the presence of nonconservative forces "the addition of 
dissipative forces can be a destabilizing influence." 

The mechanism of this destabilization is shown in Fig. 3, where the "trajectories" of 
the complex roots $ are plotted against 7. Trajectory a corresponds to the absence of fric- 
tion. When 7 = 7, = 1.79 the real roots become equal, and for 7 > 7* they are complex con- 
jugates, which corresponds to instability (Y < 0). Trajectory b is obtained with friction 
taken into account (r = 0.05, e v = 0.1167, k = i, ~ = 0, ~ = i, 5 = 0). It is close to 

TABLE 2 

X --Y 

0 0,5 O,i 0,02 0 0,5 O,i 0,2 

1,75 
1,80 
1,85 
1,90 
1,95 
2,00 
2,05 
2,i0 

0,455 
0,638 
0,633 
0,688 
0,7i4 
0,740 
0,767 
0,794 

0,410 
0,480 
0,536 
0,580 
0,617 
0,650 
0,681 
0,7t0 

0,358 
0,4t0 
0,457 
0,499 
0,537 
0,571 
0,604 
0,635 

0,279 
0,316 
0,353 
0,387 
0,420 
0,452 
0,482 
0,512 

0 
0,067 
0,186 
0,256 
0,3i2 
0,359 
0,402 
0,442 

0,094 
0,t40 
0394 
0,248 
0,298 
0,34"3 
0,385 
0,425 

0,t35 
0,i72 
0,213 
0,255 
0,296 
0,336 
0,375 
0,4i2 

0,t67 
0,198 
0,2i3 
0,263 
0,296 
0,329 
0,362 
0,394 
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TABLE 3 

t0,6 
i0,7 
i0,8 
t0,9 
tt,0 
t1,t 
1t,2 

0,6i8 
0,723 
0,834 
0,980 
1,048 
i,899 
t,126 

X 

h 

i 

0,6i8 
0,723 
0,833 
0,956 
1,035 
1,086 
1,t28 

3 , t4 

0,617 
0,721 
0,826 
0,929 
i,Ol3 
t,079 
1,t36 

0 
0 
0 
0 

0,096 
0,1t9 
0,i20 

- - y  

h 

0,002 
0,003 
0,006 
0,027 
0,079 
0,099 
0,098 

3,i& 

0,005 
0,008 
0,0i5 
0,033 
0,056 
0,066 
0,056 

trajectory a, but crosses over into the lower complex half-plane at a significantly smaller 
value of X. The values of 7 are given on the curves. A qualitatively similar plot was given 
in [5] for a viscoelastic model system. 

In our case it is noteworthy that with friction taken into account curve b must pass 
through the point $ = 0. At this value the effect of friction is absent, as follows from 
(2.9). Therefore the critical velocity X = 70 will be X(0) regardless of the dependence on 
eu, e v. This value can be calculated from (3.2) after a complicated evaluation of an unde- 
fined term of the type 0/0 in the expression for A($) in the limit ~ + 0. 

Figure 4 shows the dependence of 70 on o for" D = 0, 0.5, 0.75, 1.00 (curves 1-4) 
for ~ = i, 6 = 0, k = i, e u = e v = 0.05. For comparisons the dashed curve shows X,(o) cal- 
culated without taking into account friction for the case corresponding to curve i. 

For an infinitely thick layer a comparison can be carried out in Fig. 2, where ~0 corre- 
sponds to the points of the curves lying on the axis ~ = 0, and 7, corresponds to the ex- 
tremum points marked by the crosses. 

Therefore we see that in the formulation of the problem considered here it is possible 
to effectively and comparatively easily carry out a broad parameteric study of the critical 
parameters and the frequencies of the free oscillations of the elastic plating in the flow 
field. The calculations demonstrate the extremely significant effect of the thickness of the 
layer and the compressibility and density of the fluid on the critical velocity. The noted 
above destabilization with friction taken into account (the stability is significantly 
lowered) is a special case of phenomena characteristic of nonconservative stability problems. 
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